%PDF-1.5 %���� ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY
Server IP : 49.231.201.246 / Your IP : 216.73.216.149 Web Server : Apache/2.4.18 (Ubuntu) System : Linux 246 4.4.0-210-generic #242-Ubuntu SMP Fri Apr 16 09:57:56 UTC 2021 x86_64 User : root ( 0) PHP Version : 7.0.33-0ubuntu0.16.04.16 Disable Function : exec,passthru,shell_exec,system,proc_open,popen,pcntl_exec MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/src/linux-headers-4.4.0-112/arch/powerpc/include/asm/ |
Upload File : |
#ifndef _ASM_POWERPC_PTE_8xx_H #define _ASM_POWERPC_PTE_8xx_H #ifdef __KERNEL__ /* * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. * We also use the two level tables, but we can put the real bits in them * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit * based upon user/super access. The TLB does not have accessed nor write * protect. We assume that if the TLB get loaded with an entry it is * accessed, and overload the changed bit for write protect. We use * two bits in the software pte that are supposed to be set to zero in * the TLB entry (24 and 25) for these indicators. Although the level 1 * descriptor contains the guarded and writethrough/copyback bits, we can * set these at the page level since they get copied from the Mx_TWC * register when the TLB entry is loaded. We will use bit 27 for guard, since * that is where it exists in the MD_TWC, and bit 26 for writethrough. * These will get masked from the level 2 descriptor at TLB load time, and * copied to the MD_TWC before it gets loaded. * Large page sizes added. We currently support two sizes, 4K and 8M. * This also allows a TLB hander optimization because we can directly * load the PMD into MD_TWC. The 8M pages are only used for kernel * mapping of well known areas. The PMD (PGD) entries contain control * flags in addition to the address, so care must be taken that the * software no longer assumes these are only pointers. */ /* Definitions for 8xx embedded chips. */ #define _PAGE_PRESENT 0x0001 /* Page is valid */ #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ #define _PAGE_SPECIAL 0x0008 /* SW entry, forced to 0 by the TLB miss */ #define _PAGE_DIRTY 0x0100 /* C: page changed */ /* These 4 software bits must be masked out when the L2 entry is loaded * into the TLB. */ #define _PAGE_GUARDED 0x0010 /* Copied to L1 G entry in DTLB */ #define _PAGE_USER 0x0020 /* Copied to L1 APG lsb */ #define _PAGE_EXEC 0x0040 /* Copied to L1 APG */ #define _PAGE_WRITETHRU 0x0080 /* software: caching is write through */ #define _PAGE_ACCESSED 0x0800 /* software: page referenced */ #define _PAGE_RO 0x0600 /* Supervisor RO, User no access */ #define _PMD_PRESENT 0x0001 #define _PMD_BAD 0x0ff0 #define _PMD_PAGE_MASK 0x000c #define _PMD_PAGE_8M 0x000c /* Until my rework is finished, 8xx still needs atomic PTE updates */ #define PTE_ATOMIC_UPDATES 1 /* We need to add _PAGE_SHARED to kernel pages */ #define _PAGE_KERNEL_RO (_PAGE_SHARED | _PAGE_RO) #define _PAGE_KERNEL_ROX (_PAGE_SHARED | _PAGE_RO | _PAGE_EXEC) #define _PAGE_KERNEL_RW (_PAGE_SHARED | _PAGE_DIRTY | _PAGE_RW | \ _PAGE_HWWRITE) #define _PAGE_KERNEL_RWX (_PAGE_SHARED | _PAGE_DIRTY | _PAGE_RW | \ _PAGE_HWWRITE | _PAGE_EXEC) #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_PTE_8xx_H */